High efficiency screen printed bifacial solar cells on monocrystalline CZ silicon

نویسندگان

  • L. Yang
  • Q. H. Ye
  • A. Ebong
  • W. T. Song
  • G. J. Zhang
  • J. X. Wang
  • Y. Ma
چکیده

We present industrialized bifacial solar cells on large area (149 cm) 2 cm CZ monocrystalline silicon wafers processed with industrially relevant techniques such as liquid source BBr3 and POCl3 open-tube furnace diffusions, plasma enhanced chemical vapor deposition (PECVD) SiNx deposition, and screen printed contacts. The fundamental analysis of the paste using at boron-diffused surface and the bifacial solar cell firing cycle has been investigated. The resulting solar cells have front and rear efficiencies of 16.6 and 12.8%, respectively. The ratio of the rear JSC to front JSC is 76.8%. It increases the bifacial power by 15.4% over a conventional solar cell at 20% of 1-sun rear illumination, which equals to the power of a conventional solar cell with 19.2% efficiency. We also present a bifacial glass–glass photovoltaic (PV) module with 30 bifacial cells with the electrical characteristics. Copyright # 2010 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High efficiency screen-printed solar cells on textured mono-crystalline silicon

In this paper we report on high efficiency screen-printed 4 cm solar cells fabricated on randomly textured float zone, magnetic Czochralski (MCz) and Ga-doped Cz silicon. A simple process involving POCl3 emitters, low frequency PECVD silicon nitride deposition, Al back contact print, Ag front grid print followed by co-firing of the contacts produced efficiencies of 19.0% on textured float zone,...

متن کامل

Comparison of Dielectric Surface Passivation of Monocrystalline and Multicrystalline Silicon

Reducing solar cell thickness is an attractive way to reduce material costs. However, model calculations in this paper show that if rear surface recombination velocity (S) is greater than about 1000 cm/s, a 100-μm-thick screen-printed cell on solar-grade material has a lower efficiency than a 300-μm-thick cell. The literature demonstrates that S < 1000 cm/s is readily achievable on monocrystall...

متن کامل

EFFECTIVE PASSIVATION OF THE LOW RESISTIVITY SILICON SllRFACE BY A RAPID THERMAL OXIDE/PECVD SILICON NITRIDE STACK AND ITS APPLICATION TO PASSIVATED REAR AND BIFACIAL SI SOLAR CELLS

A novel stack passivation scheme, in which plasma silicon nitride (SiN) is stacked on top of a rapid thennal SiO? (RTO) layer, is developed to attain a surface recombination velocity (S) approaching 10 em/s at the L3 O-cm p-typc (l00) silicon surfaee_ Such low S is achieved by the stack cven when the RTO and SiN films "I<ilvldllally yield considerably poorer surface passivation. Critical to ach...

متن کامل

Status of Selective Emitters for p-Type c-Si Solar Cells

Crystalline silicon (c-Si) solar cells have the lion share in world PV market. Solar cells made from crystalline silicon have lower conversion efficiency, hence optimization of each process steps are very important. Achieving low-cost photovoltaic energy in the coming years will depend on the development of third-generation solar cells. Given the trend towards these Si materials, the most promi...

متن کامل

Influence of the Front Surface Passivation Quality on Large Area n-Type Silicon Solar Cells with Al-Alloyed Rear Emitter

Efficiencies of large area n-type silicon solar cells with a screen printed rear side aluminum-alloyed emitter are mainly limited by their front surface recombination velocity. The front surface therefore has to be passivated by an effective passivation layer combined with a front surface field (FSF). In this work we investigate the influence of the front surface passivation quality and the bas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011